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Abstract 

Background: Malaria case management continues to experience dynamic changes. Building community capacity is 
instrumental in both prevention and treatment of malaria. The World Health Organization (WHO) recommends utiliza-
tion of well-trained and supervised community health workers (CHWs) to reduce the burden of malaria deaths among 
children under-5 years of age in Africa. Longitudinally-tracked information on utilization of CHWs by communities in 
terms of trends in diagnosis of malaria in children under-5 years of age is essential in influencing national and local 
malaria control policies and strategies.

Methods: A desktop review was carried out of a database consisting of confirmed uncomplicated malaria cases in 10 
villages using CHWs and out-patient departments of 10 health facilities in children under-five for the period of 3 years 
between January 2013 and December 2015. Analyses of association between the diagnosed cases and satellite-based 
rainfall, village and time (months and years) were carried out using a Poisson regression model.

Results: Analysis of malaria diagnoses made by CHWs showed the following trends: (i) the incidence of reported 
documented malaria-positive fever cases increased with time (2013–2015) and the difference over the years was 
statistically significant (P < 0.001), (ii) specific village was significantly associated (P < 0.001) with reporting malaria-
positive fever cases, (iii) the long-term monthly sequence starting from highest to lowest incidence of reported 
malaria-positive fever cases was July, May and June, March, August, April, September, November, and February, 
October and, finally, January, and the difference in reported malaria-positives between the months was statistically 
significant (P = 0.001) and (iv) none of the tested rainfall regimes (current, lagged or cumulative) was associated with 
reported malaria-positive fever cases during the 3-year period (P > 0.1). Looking at the number of diagnoses made at 
the health facilities, (i) The number of reported malaria-positive fever cases decreased with time (2013–2015) and the 
difference among the years was not statistically significant (P = 0.399), (ii) The long-term monthly sequence starting 
from highest to lowest number of reported malaria-positive fever cases was July, June, May, April, January, August, 
March, February, September, November, October and December, and the difference between the months was statisti-
cally significant (P < 0.001).
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Background
Fever is the most well-recognized sign of an infection and 
is defined as an elevated axillary temperature (≥ 37.5 °C) 
in a child or an adult [1]. Fever accounts for over 30–50% 
of all paediatric cases seeking healthcare in low-resource 
areas in sub-Saharan Africa [2]. It is also estimated that 
28% of fever cases among children aged between 0 and 
4 years are likely to seek treatment in a public sector clinic 
in Africa [3]. In Kenya, fever is the most common symp-
tom exhibited by people seeking health care [4, 5]. Fever 
is a sine qua non of malaria [2], and in turn, malaria is a 
major contributor to morbidity and mortality in sub-
Saharan Africa [6]. In Kenya, malaria is estimated to cause 
approximately 20% of all deaths of children under 5 years 
of age [7]. As most health care workers in Africa associ-
ate fever with malaria, rapid diagnostic tests (RDTs) for 
malaria have been developed to improve the rational treat-
ment of children with fever [8]. This management has, over 
time, realized major changes in recommendations with the 
aim of reducing the associated morbidity and mortality 
from malaria [9–11]. One of the recommendations is the 
integration of community-based health workers (CHWs) 
into the primary health care systems [12].

Early diagnosis and rapid effective therapy are essential 
management strategies for surveillance, control and elim-
ination, thus averting malaria morbidity and mortality. 
Indeed, early effective anti-malarial treatment may also 
decelerate transmission in a population. According to the 
World Health Organization (WHO), building community 
capacity through training and supervising community 
health workers (CHWs) can help reduce morbidity and 
mortality associated with malaria in Africa. This can be 
achieved through rapid and effective treatment of malaria 
cases within 24 h [12]. In addition, the WHO recommen-
dation on the diagnosis of malaria is based on parasito-
logical diagnostic approaches namely light microscopy 
and immunochromatographic rapid diagnostic tests 
(RDTs) [10]. Given the limitations of microscopy in the 
rural areas, malaria RDT is a user-friendly and accurate 
diagnostic tool that can be performed at the point of care 
in communities by CHWs in Africa [13].

Increased utilization of CHWs in the management of 
malaria and other childhood infections has been com-
prehensively reported [14–21]. These reports suggest 
that properly supervised CHWs can lead to improved 

management of uncomplicated child fever cases in areas 
with limited health facilities, thereby reducing child 
mortality. However, literature on characterization of the 
space–time pattern of utilization and performance of 
CHWs in terms of diagnosis of malaria carried out in a 
longitudinal manner is scarce. Lack of longitudinal data 
on CHWs utilization and performance implies that gov-
ernments and research partners cannot adequately evalu-
ate the impact of CHWs on health outputs and outcomes. 
The presence of longitudinal data may also unravel exist-
ing and dynamic patterns of acceptability of CHWs by 
the communities they serve. Furthermore, without data 
that spans across years, governments and research part-
ners cannot assess the global trends and progress made 
over time. This study set out to address these concerns 
from an evidence-based perspective.

Malaria is a complex disease and its transmission and 
prevalence are influenced by many factors. For instance, 
rainfall, temperature, and humidity are considered to 
play a major role in determining mosquito reproduction 
and mortality [22–24]. Temperature and rainfall influ-
ence both the development of mosquitoes and malaria 
parasites. Increased precipitation generates more breed-
ing grounds for mosquitoes and subsequently increases 
their numbers [25]. Thus, a pattern exists where periods 
of low and high risks can be characterized. Where CHWs 
complement health facilities, data from community-
based surveillance can be utilized to describe spatial and 
temporal patterns of variation in infection or disease 
incidence [26]. Evidence is, therefore, needed to show 
whether CHWs can innovatively and effectively play a 
role in these strategies.

Malaria is the commonest cause of fever in western 
Kenya where transmission is high with an entomologi-
cal inoculation rate (EIR) of approximately twenty-four 
infective bites per person per year with children under-
five bearing the brunt [27]. The “Millennium Villages 
Project” located in this region is an integrated rural 
development approach initiated in 2004. Professionalized 
CHWs is one aspect of the “Millennium Villages Project” 
health system aimed at scaling up of community health 
delivery.

To address the aforementioned issue of data needs and 
evidence-based health systems evaluation, this study 
aimed at determining trends (over a period of 3  years) 

Conclusions: CHWs have the potential to play a major role in diagnosing and treating malaria, thereby decreas-
ing under-five children mortality. Temporally, the risk of diagnosing malaria seems predictable and this may present 
opportunities for policy-targeted malaria preparedness and control. The findings are expected to support policy 
actions that may scale-up community health services in remote rural settings.
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in the number of fever cases diagnosed as malaria using 
CHWs in the “Millennium Villages Project” and in health 
facilities in Yala Division, Siaya County in Kenya. An 
attempt was also made to determine the periods (months 
and years) with highest risks of fever which was diag-
nosed as malaria by the two institutions (CHWs and in 
health facilities). The study also sought to assess the 
relationship between fever-related malarial cases and 
rainfall in the study area. Integrating climatic informa-
tion enriched this study in determining the role of rain-
fall patterns in malaria infections over time and/or space 
and whether these dynamics were implicitly captured in 
cases diagnosed by the two institutions. The data used 
was obtained for the period between January 2013 and 
December 2015 from both 158 CHWs and outpatient 
departments (OPD) of 10 health facilities in Yala Division, 
Siaya County in Kenya. CHWs managed uncomplicated 
malaria cases with artemisinin-based combination ther-
apy (ACT) and referred malaria-negative cases to clinics 
or hospitals. The study findings will be used to support 
policy actions towards scaling-up community health ser-
vices in the management of malaria in resource-limited 
settings.

Methods
Study area
The study was conducted within the “Millennium Vil-
lages Project” in the highlands of Western Kenya, in 

Yala Division, Gem sub-county, in Siaya County. The 
Millennium Village comprises 11 sub-villages with a 
total population of approximately 65,000. The site is 
located at 34.75° longitude east and 0.24° latitude north, 
30  km north of Lake Victoria and 1400–1500  m above 
sea level (Fig. 1). The average temperature in the area is 
24  °C, ranging from 18 to 27  °C with an annual rainfall 
of 1800  mm. The rainfall pattern is bimodal: the long 
rainy season occurs from March to June and the short 
rainy season from September to December. Subsistence 
agriculture is the main livelihood in the area. Anopheles 
funestus and Anopheles gambiae sensu stricto (s.s.) are 
the main anopheline species found in the study area [27].

Study context
Policy context: Kenya National CHW Programme 
“Community Strategy”
The Kenya’s community health strategy 2006 [28] insti-
tutionalized CHWs into Level one of Kenya’s primary 
health care delivery system by clearly providing con-
structs that operationalize service provision at the com-
munity level. The operationalization includes establishing 
a Level 1 care unit to serve a local population of 5000 
people by instituting a cadre of well-trained CHWs: each 
worker provides Level 1 service to 20 households; one 
community health extension worker (CHEW) supports 
25 CHWs and ensures that the recruitment and manage-
ment of CHWs is carried out by village and facility health 

Fig. 1 Map of the millennium village cluster and sub-villages, in Siaya County, Kenya



Page 4 of 14Apat et al. Malar J  (2017) 16:454 

committees [28]. CHEWs also support CHW through 
supervision and coaching and meet with their CHWs 
monthly [29].

Parts of the Community Strategy were revised in 2010 
following resolutions of the Ministry of Health, Health 
Sector Coordinating Committee (HSCC). Household 
coverage was revised to correspond with the population 
density ranging from one CHW covering 500 people for 
areas with dense populations. The policy document also 
stipulated that the CHWs were entitled to a minimum 
payment of Kenya Shillings 2000 (US$20) a month as a 
performance-based incentive [30].

The CHWs conjoin national health facilities and the 
community members with specific responsibilities such 
as health promotion, disease prevention, care seeking 
and treatment of specific diseases, such as uncomplicated 
malaria and diarrhea and compliance with treatment and 
advice and household follow-up [28].

The Millennium Villages Project approach
The “Millennium Villages Project” (MVP) was a dem-
onstration project of the Earth Institute at Columbia 
University and a non-governmental organization, Millen-
nium Promise Alliance. The project hypothesized that an 
integrated approach to rural development could be used 
to achieve the millennium development goals (MDGs). 
MDG 8 (Combat HIV/AIDS, malaria and other diseases) 
recommended targets addressing the challenges by the 
main burden of disease and to do so by the end of 2015 
[16].

The MVP’s CHW programme strategies are described 
elsewhere [16, 31]. In brief, the CHW programme of the 
MVP utilizes a workforce of CHWs, with each CHW 
serving at least 100–150 households and approximately 
650 people. The MVP CHWs are supervised by senior 
CHWs in groups of six. The seniors are in turn supervised 
by Health Facilitators in a ratio of approximately 8–20 
depending on the setting. The CHWs provide preventa-
tive care through health education and limited curative 
services. They are provided with a CHW kit that has basic 
drugs such as oral rehydration solution, zinc, paraceta-
mol, RDTs for malaria parasites detection in reported 
fever cases, and artemether-lumefantrine  (Coartem®) 
for the household-level treatment of positive RDT cases. 
Children under-5  years receive monthly routine follow-
up for danger signs detection, growth monitoring assess-
ments, use of bed nets for malaria prevention, vitamin 
A and immunization status. However, for this study, 
only child presenting with fever was tested for malaria. 
The CHWs are supported by Information and Commu-
nications Technology (ICT) systems that are facilitated 
through a mobile telephony system. The mobile heath 
technology uses information collected at the household 

level by CHWs to monitor child and maternal health, as 
well as monitor compliance with treatment administered 
at the clinic level. Currently, within MVP, CHWs are 
County employed and are considered to be volunteers, 
although at the time of the study, they were receiving an 
additional 4000 Kenyan Shillings (~ $40 USD) per month.

Health facility diagnosis and management
Case management at the government health facilities in 
the study site was based on WHO and national guidelines 
for diagnosis and treatment of malaria. Briefly, diagnosis 
of malaria was carried out with parasitological confir-
mation using microscopy and/or RDTs. Only confirmed 
positive cases of uncomplicated malaria were initiated on 
treatment with ACT. Cases of severe/complicated malaria 
were given initial treatment but immediately referred by 
ambulance to a referral hospital for parenteral treatment.

Database
A desk review of the project database was conducted. 
Monthly fever entries and confirmed malaria-positive 
counts presented by CHWs and OPD of the health facili-
ties among children under-5 years of age over a period of 
3  years (2013–2015) were extracted. Fever (fewer than 
7-days) cases reported were determined based on integra-
tion of (1) history from parent/caregiver; or, (2) chills; or, 
(3) a temperature (axillary) of 37.5  °C or above. Malaria 
testing with either an RDT kit or microscopic blood exami-
nation was administered for all fever cases. A positive RDT 
or microscopic examination was classified as a malaria case 
and a complete dose of ACT was given based on age.

Precipitation data
Malaria transmission is rainfall sensitive and, therefore, 
attempts were made to take advantage of the available sup-
ply of satellite-based rainfall information to supplement 
the scantily available ground-based precipitation data. 
Monthly satellite rainfall data for the study area and period 
were obtained from the Tropical Rainfall Measurement 
Mission (TRMM) [32]. Satellite-based TRMM precipita-
tion estimate has been used in predicting and simulating 
mosquito population dynamics and mosquito-borne dis-
ease risk [33]. Different regimes of rainfall were assessed 
for the association with fever and malaria counts—current 
study month estimate, 1-, 2- and 3-month lagged values 
and 2- and 3-month cumulative rainfall.

Descriptive analyses
Data were descriptively analysed as proportions of fever 
and malaria-confirmed cases out of the total population 
of children aged less than 5 years in a specific village, in a 
given month. Results were presented in frequency tables 
and graphs of proportions or counts.
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Inferential analyses
Malaria data from CHW were presented in form of 
counts per village, by month and year whereas the 
malaria data from health facilities were presented in form 
of counts by month and year alone (without village infor-
mation). In both cases, the data were assumed to follow 
Poisson distribution which is used to model counts of 
disease events in a group of individuals. Several forms 
may be assumed to follow Poisson distribution: (i) count 
of cases over a period of time with the amount of person-
time at risk having to be taken into account; (ii) count of 
cases of disease with the size of population at risk being 
taken into consideration; or (iii) a count of outcome that 
is measured over a geographical area. In this study, count 
of cases of confirmed malaria with the size of the popula-
tion at risk being taken into consideration was used.

The Poisson regression model was described as follows: 
E(Y) = μ = nλ where: E(Y) was the expected number of 
cases of malaria and n was the exposure (which adjusted 
for the different sizes of the children population at risk 
by month, year and village). In this study, n was trans-
formed to a log scale, i.e. the log of the population at risk 
which is normally referred to as an offset. λ represented 
a function which defined the malaria occurrence. One of 
the ways that λ could be related to the predictor (inde-
pendent variables)—in this study, rainfall and month of 
the year and village—was: � = e

β0+β1x. Consequently, 
the Poisson model was of the form E(Y ) = ne

β0+β1x or 
log E(occurrence) = log E(occurrence)

n
= β0 + β1x where 

ln E(occurrence) was the log of the expected value of the 
occurrence of malaria cases being modeled as a linear 
combination of predictors. This formed the univariable 
analysis (rainfall, month, year and village separately for 
data from CHWs and month and year separately for data 
from health facilities).

The Poisson model assumes that the mean and the vari-
ance are equal (conditional upon the predictors in the 
model)—that is, the mean and the variance of counts are 
equal following consideration of the effects of the predic-
tors in the model. However, the variance may be greater 
than the mean in the raw data (i.e. unadjusted estimates) 
and still meet this requirement. Nevertheless, if the 
unadjusted variance is greater than twice the unadjusted 
mean, then overdispersion is highly suspected. Overdis-
persion is said to occur when the variance is much larger 
than then the mean. This is common with count data 
and arises when the data are clustered—persons within 
a village or with time. Thus, in this study, part of varia-
tion between villages or unit time (months or years) was 
due to the variation between villages or time. Conse-
quently, the model will not fit the data well. This study 
dealt with this problem by fitting a model which allowed 
the variance to be larger than the mean by assuming 

that the variance is a function of the mean as follows: 
var = (1 + αμ)μ = μ + αμ2 where α was the overdisper-
sion parameter. This formulation gives rise to a negative 
binomial model. Note that if α  =  0, then the variance 
will equal μ and the model is a simple Poisson model. 
The interpretation of a negative binomial distribution as 
a Poisson distribution with extra dispersion corresponds 
to a random effects model where the distribution of Pois-
son means is subjected to additional variation which has 
a gamma distribution. As with Poisson distribution, the 
usual form was similar to the expressions provided above 
for Poisson model except that E(Y) had a negative bino-
mial distribution. The negative binomial model was fit 
using an iterative maximum likelihood estimation pro-
cedure. The level of significance was set at P ≤ 0.1. The 
statistical significance of the contribution of an individ-
ual contributor to the model was tested using likelihood 
ratio tests (P < 0.05). Overdispersion was evaluated using 
a likelihood ratio test that compared the usual Poisson 
model to the negative binomial model by testing whether 
α = 0 (level of significance set at P ≤ 0.05).

Ethical approval
Ethical approval was obtained from the Kenya Medical 
Research Institute (Non-SSC protocol 030) and Colum-
bia University, USA (Protocol: IRB-AAAF1647 [Y3M00]).

Results
Diagnosis of fever‑related malaria cases by CHWs
Table  1 and 2 shows the (a) average population of chil-
dren under-5  years of age, (b) mean number fever epi-
sodes, (c) mean proportion of children under-5  years 
of age that developed fever, (d) mean number of con-
firmed malaria episodes, (e) mean proportion of children 
under-5  years of age with confirmed malaria, (f ) mean 
number of non-malaria episodes and (g) mean propor-
tion of children under-5 years with non-malaria episodes 
as reported by community health workers by village and 
year respectively between years 2013 and 2015 in Siaya 
County, Kenya. The yearly average population of children 
under-5  years of age in each of the ten villages ranged 
between 414 and 936 per village during the study period 
(Table  1). The mean proportions of fever cases ranged 
between 5.8 and 13.3% across the villages whereas mean 
proportions of malaria cases ranged between 4.7 and 
12.0% across the villages. Figure 2 shows the proportions 
of confirmed malaria cases between the years 2013 and 
2015. The incidence of malaria-positive cases as diag-
nosed by CHWs increased with time (Fig.  2). Figures  3 
and 4 show the long-term (3-year study period) monthly 
average proportions of malaria diagnosis by CHWs. The 
months of July, May, and June had the highest incidence 
of diagnosed malaria (10.20, 8.74, and 8.73%, respectively 



Page 6 of 14Apat et al. Malar J  (2017) 16:454 

in that order). On the other hand, the months of January, 
October and February had the lowest incidence of diag-
nosed malaria-positive cases with proportions of 5.55, 
6.38, and 6.41% respectively in that order (Figs. 3, 4).

Diagnosis of fever‑related malarial cases in health facilities
Table  3 shows the (a) average population of children 
under-5  years of age, (b) mean number fever episodes, 
(c) mean proportion of children under-5 years of age that 

developed fever, (d) mean number of confirmed malaria 
episodes (e) mean proportion of children under-5  years 
of age with confirmed malaria, (f ) mean number of 
non-malaria episodes and (g) mean proportion of non-
malaria episodes in children under-5  years as reported 
by health facilities between years 2013 and 2015 in Siaya 
County, Kenya. The mean proportions of fever cases 
ranged between 22.1 and 25.5% across time whereas 
mean proportions of malaria cases ranged between 10.8 
and 13.3% across time. Figure  5 shows the proportions 
of confirmed malaria cases between the years 2013 and 
2015. The incidence of reported malaria-positive cases 
in health facilities decreased with time (Fig. 5). Figures 6 
and 7 show the long-term monthly average proportions 
of malaria diagnosis in health facilities. The months of 
July, May, and June had the highest incidence of reported 
malaria-positive cases (20.3, 18.7, and 18.2%, respectively 
in that order). On the other hand, the months of Decem-
ber, October and November had the lowest incidence of 
reported malaria-positive cases with proportions of 6.3, 
7.4, and 8.1%, respectively in that order (Figs. 6, 7).

Negative binomial regression univariable analyses 
for diagnosis of malaria cases by CHWs
Table 4 shows the estimated negative binomial regression 
coefficient comparing (1) all villages to Anyiko village, (2) 

Table 1 Descriptive statistics of children under-5 years as reported by community health workers by village

Village Average 
population 
(< 5 years)

Average  
fever counts

Mean fever  
proportion (%)

Average 
malaria 
counts

Mean  
malaria  
proportion (%)

Average  
non‑malaria 
counts

Mean  
non‑malaria 
proportion (%)

Anyiko 483.3 39.2 8.3 34.4 7.3 4.8 1.0

Gongo 507.3 51.3 10.4 41.0 8.4 10.3 2.0

Jina 414.0 38.0 9.6 29.9 7.4 8.1 2.2

Lihanda 838.3 63.9 7.7 54.7 6.6 9.2 1.1

Marenyo 925.7 76.4 8.5 69.4 7.7 7.0 0.8

Nyamninia 936.3 56.8 6.1 43.8 4.7 12.9 1.4

Nyandiwa 607.7 34.3 5.8 29.6 5.0 4.7 0.8

Nyawara 406.7 36.4 9.3 31.2 8.0 5.2 1.3

Ramula 764.7 101.7 13.3 92.1 12.0 9.6 1.3

Uranga 719.7 62.6 8.8 51.8 7.3 10.7 1.5

Table 2 Descriptive statistics of malaria diagnosis by community health workers by years

Year Average 
population 
(< 5 years)

Average fever 
counts

Mean fever  
proportions (%)

Average  
malaria positive 
counts

Mean  
malaria positive 
proportions (%)

Average  
non‑malaria 
counts

Mean  
non‑malaria 
proportions (%)

2013 688.6 39.2 5.8 30.5 4.5 8.6 1.4

2014 631.2 57.8 9.5 50.3 8.2 7.6 1.3

2015 661.3 71.2 11.0 62.5 9.6 8.6 1.3
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Fig. 2 Average proportions of confirmed malaria cases diagnosed by 
community health workers in children under-5 years
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Fig. 3 Long-term average monthly proportions of confirmed malaria cases diagnosed by community health workers in children under-5 years
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Fig. 4 Graph showing monthly counts of confirmed malaria cases diagnosed by community health workers in children under-5 years

Table 3 Descriptive statistics of children under-5 years as reported in health facilities

Year Population 
(< 5 years)

Fever 
counts

Mean fever  
proportions (%)

Average  
malaria positive 
counts

Mean  
malaria positive 
proportions (%)

Average  
non‑malaria 
counts

Mean  
non‑malaria 
proportions (%)

2013 6886 1753.3 25.5 912.4 13.3 840.8 12.2

2014 6312 1563.5 24.8 745.7 11.8 817.8 13.0

2015 6613 1462.4 22.1 716.2 10.8 746.3 11.3
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years 2014 and 2015 to 2013, and (3) all months of the 
year to January. Various regimes for the rainfall were 
evaluated for their relationship and fever-related con-
firmed malaria-positive cases. Five villages, Ramula, 
Marenyo, Uranga, Gongo and Lihanda in that order had 
a significantly higher incidence of reported malaria-
positive fever cases relative to Anyiko village (P  <  0.05) 
(Table  4). In addition, the village variable was signifi-
cantly associated (likelihood ratio test P  <  0.001) with 
reporting malaria-positive fever cases (Table 4). The inci-
dence of reported malaria-positive fever cases increased 
with time and the difference among the years was statis-
tically significant (Table  4). Long-term, all months had 
a higher incidence of reported malaria-positive fever 
cases relative to January (P < 0.05). The higher incidence 

of reported malaria-positive cases was statistically dif-
ferent from January in the months of March and in the 
period May to August (P < 0.05). The long-term monthly 
sequence starting with highest to lowest incidence of 
reported malaria-positive fever cases were July, May and 
June, March, August, April, September, November, and 
February, October and finally January. None of the tested 
rainfall regimes were associated with reported malaria-
positive fever cases during the 3-year period. The like-
lihood ratio tests of α for all predictors were all highly 
significant (P  <  0.001) implying that the variance in the 
data was higher than would be expected for a Poisson 
regression model.

Negative binomial regression univariable analyses 
for diagnosis of malaria cases in health facilities
Table 5 shows the estimated negative binomial regression 
coefficient comparing (1) years 2014 and 2015 to 2013, 
and (2) all months of the year to January. In contrast with 
diagnoses by CHWs, the incidence of reported malaria-
positive fever cases diagnosed in facilities decreased with 
time though the difference among the years was not sta-
tistically significant (Table  5). In contrast with diagno-
ses by CHWs, only the months of April, May, June, and 
July had a higher incidence of reported malaria-positive 
fever cases relative to January (P  <  0.05). The higher 
incidence was statistically different from January for 
these months (P < 0.05) with for the exception of April. 
Again in contrast with diagnoses by CHWs, 7  months 
(February, March, August, September, October, Novem-
ber and December) had a lower incidence of reported 
malaria-positive fever cases relative to January. The 
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lower incidence was statistically different from January 
for the period between September and December but 
not in February and March and August (P  <  0.05). The 
long-term monthly sequence starting with the highest 
incidence of reported malaria-positive fever cases was 
July, June, May, April, January, August, March, Febru-
ary, September, November, October and December. The 
likelihood ratio tests of α for all predictors were all highly 
significant (P  <  0.001) implying that the variance in the 
data was higher than would be expected for a Poisson 
regression model.

Discussion
This study has demonstrated clear temporal differences 
in the diagnosis of malaria by CHWs and by the clini-
cians in health facilities among children under-5 years of 
age between January 2013 and December 2015 in Siaya 
County, Kenya. Whereas the diagnoses of malaria cases 
using household-administered rapid diagnostic test 
(RDTs) by CHWs increased with time, the diagnoses of 
malaria in health facilities decreased with time during 
the study period. This concurs with reported increase in 
effective utilization of CHWs as a source of advice and/
or case management for child fevers at the household 
level, corresponding with a decline in visits at govern-
ment facilities and other sources including shops in 
coastal Kenya [15]. It reflects a gradual shift in the use 
of health facilities towards the use of CHWs for health 
care by the community. It also demonstrates emerging 

health care delivery system where most of the simple 
malaria cases are detected and treated at the household 
level. Moreover, the study findings support the proposi-
tion that CHWs can play a key role in complementing 
facility-based health service delivery to communities in 
developing countries such as Kenya [15]. It is possible 
that CHWs’ deep and extensive understanding of the 
community’s context and values and their own perma-
nent residency within the community generates wide-
spread acceptable client-service provider relationships 
relative to health facility staff [17, 34]. Potential benefits 
of this shift can be a decrease in the health facility burden 
by uncomplicated paediatric fever cases and therefore 
avail health facility staff [17] for other cases particularly 
non-malarial fever cases. This shift to diagnosis and 
treatment by CHW increases the proportion of children 
who receive appropriate treatment for febrile illness and 
receive it early, within 24  h of onset of symptoms [35]. 
Emerging professionalized CHW programmes have 
deliberately and progressively been supported in extend-
ing primary health care from facilities to communities in 
rural and other low-income settings in diverse countries 
[36]. By integrating CHW programmes into the formal 
health care delivery systems with training, supervision, 
reporting and feedback mechanisms, communities may 
be starting to be sensitive to these programme mecha-
nisms. Given the broader range of services that CHWs 
provide, by taking advantage of the new technologies 
in health, qualitative research is needed to understand 
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the experiences and attitudes of communities towards 
CHW programmes. This would provide evidence to fur-
ther support scaling up and deeper integrating a formal 
CHW cadre into health systems of the primary health 
care delivery. Areas of health that would greatly benefit 
include surveillance to pick up epidemics early, rapid 
diagnosis and case management and implementation 
of preventive measures to diseases which contribute to 
mortality in sub-Saharan Africa.

Nevertheless, these findings were realized in the con-
text of a project that emphasized, paid, supervised, 
smartphone empowered, professional cadre of CHWs for 
improved quality of services, retention, and accountabil-
ity [16]. Whereas the approach and features of the pro-
ject could have positively influenced results presented 
in this paper, the findings are a pointer to the fact that 
if well supported and motivated, CHW activities can 
have a profound effect on improving public health in the 

communities. The cost for scaling up a CHW subsystem 
was computed to be US$6.56 per head per year for the 
rural population including the smartphone utilization 
[37]. This is a demonstration of how the high impact sys-
tem can be implemented at a low cost that national gov-
ernments in Sub-Saharan Africa can afford.

Community health workers play an important role in 
malaria surveillance as part of the broader healthcare 
system [38, 39]. The primary objective of surveillance is 
to assess trends over time and identify geographic differ-
ences in malaria incidence in real-time so that findings 
can be quickly addressed and corrected. It is estimated 
that malaria surveillance systems detect 19% of cases 
that occur globally [40]. This is because the majority of 
malaria surveillance reports are derived from health facil-
ities despite a relatively low proportion of patients with 
fever cases who attend public health facilities. With this 
inherent limitation in the reporting system in the public 

Table 4 Negative binomial regression univariable analyses (P ≤ 0.1) for cases diagnosed by community health workers

* P used to test the statistical significance (P ≤ 0.1) of the contribution of the variable to the univariable model; ╩P used to test the statistical significance of α (the 
overdispersion parameter). When the statistical significance of α is significant (P ≤ 0.05), it suggests that the variance in the data is higher than would be expected for 
a Poisson regression

Variable Variable category Coefficient 95% confidence interval P > |z| Likelihood ratio test P* α Likelihood‑ratio test of α = 0

Village Marenyo 0.52 [0.30, 0.74] 0.000 0.000 0.21 0.000╩

Nyawara 0.06 [− 0.17, 0.28] 0.608

Nyandiwa − 0.21 [− 0.44, 0.01] 0.064

Gongo 0.26 [0.04, 0.49] 0.021

Ramula 0.83 [0.61, 1.06] 0.000

Nyamninia 0.01 [− 0.21, 0.24] 0.896

Jina − 0.13 [− 0.36, 0.08] 0.234

Uranga 0.32 [0.10, 0.54] 0.005

Lihanda 0.23 [0.01, 0.46] 0.040

Year 2014 0.52 [0.39, 0.64] 0.000 0.000 0.22 0.000

2015 0.73 [0.61, 0.86] 0.000

Month February 0.15 [− 0.13, 0.42] 0.301 0.001 0.28 0.000

March 0.35 [0.07, 0.63] 0.012

April 0.26 [− 0.01, 0.54] 0.063

May 0.45 [0.18, 0.73] 0.001

June 0.45 [0.18, 0.73] 0.001

July 0.59 [0.31, 0.87] 0.000

August 0.34 [0.06, 0.62] 0.015

September 0.18 [− 0.09, 0.46] 0.193

October 0.12 [− 0.15, 0.40] 0.374

November 0.15 [− 0.12, 0.43] 0.284

December 0.24 [− 0.03, 0.52] 0.088

Rainfall Current 0.00042 [− 0.0006, 0.0015] 0.436 0.436 0.30 0.000

1 month lag − 0.0004 [− 0.0006, 0.0015] 0.410 0.411 0.30 0.000

2 month lag 0.00014 [− 0.002, 0.002] 0.896 0.896

2 month cumulative − 0.00001 [− 0.0006, 0.0006] 0.964 0.964 0.30 0.000

3 month cumulative 0.00006 [− 0.0004, 0.0006] 0.825 0.825 0.30 0.000

4 month cumulative − 0.00005 [− 0.0005, 0.0004] 0.847 0.847 0.30 0.000
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sector, low-cost innovative approaches including com-
munity-based services [8, 26, 41] are needed in collecting 
malaria surveillance data which allows for the analysis of 
spatial distribution of patterns of malaria cases over time. 
This could help direct intervention efforts and identify 
areas by village site that are more affected by malaria, 
identify trends in cases by time and location that require 
additional interventions and assess the impact of control 
measures.

In order to further understand why there was an 
increase in cases detected by CHWs over the study 
period, possible reasons are described in this paper: 
(1) decreased availability or use of vector control pro-
grammes and dilapidation of the healthcare infra-
structure, and (2) climate variability. Malaria is a 
climate-sensitive disease with temperature influencing 
the development rates and longevity of malaria parasites 
and mosquito vectors [23]. In addition, rainfall influ-
ences the availability of mosquito aquatic stage breed-
ing sites and, thus, mosquito population dynamics [23]. 
However, there is no evidence to support substantial cli-
mate variability as measured by the average annual vari-
ance in the temperature and/or rainfall during the study 
period to result in the observed increases in detection. In 
addition, the period of study was too short for detailed 
analyses on effects of climate variability. On the tempo-
ral progressive preference of CHWs, a previous study in 
Kenya reported diverse barriers on both the demand and 
delivery of prompt and effective treatment for malaria in 
children under-5 years of age at government health facili-
ties [42]. Notably, the effects of extreme rainfall on local 
infrastructure, for instance, flood damage to roads and 

bridges have a potential to affect community access and 
mobility to health facilities and shift demand for health 
care to the closely available CHWs. The authors have no 
evidence that these factors may have played a role in this 
context. Moreover, this study period coincided with the 
period of commencement of the devolved health care 
service delivery in Kenya and, therefore, dilapidation of 
the healthcare infrastructure can theoretically be ruled 
out due to initial enthusiasm about the new health deliv-
ery system. In a separate study, an examination of pae-
diatric hospitalizations due to malaria was carried out 
between 2 and 36  month periods: September 2003 and 
August 2006 and the period September 2006 to August 
2009 [43]. These two periods represented major shifts 
in intervention policy change and scaled intervention 
(pre- and post- respectively). Whereas all sites showed a 
significant reduction in malaria cases between these two 
time periods, the situation was different in Siaya County 
where malaria admission rates rose in the second period 
compared to the pre-scaled intervention period before 
September 2006 [43]. This suggests that the malaria 
transmission risk is persistently high in Siaya County and 
requires attention.

Diagnoses of fever-related malaria by CHWs and in 
health facilities mostly occurred around July, May, and 
June in that order across the 3-year study periods. Rain-
fall in the study area is bimodal—the long rainy season 
occurs from March to June and the short rainy season 
from September to December. Studies have reported 
an association between rainfall and malaria incidence 
3–4  months after commencement of rains [44–48]. 
For instance, in Nandi Highlands in western Kenya, 

Table 5 Negative binomial regression univariable analyses (P ≤ 0.1) for cases diagnosed in health facilities

* P used to test the statistical significance (P ≤ 0.1) of the contribution of the variable to the univariable model; ╩P used to test the statistical significance of α (the 
overdispersion parameter). When the statistical significance of α is significant (P ≤ 0.05), it suggests that the variance in the data is higher than would be expected for 
a Poisson regression

Variable Variable category Coefficient 95% confidence interval P > |z| Likelihood ratio test P* α Likelihood‑ratio test of α = 0

Year 2014 − 0.16 [− 0.49, 0.17] 0.337 0.399 0.17 0.000╩

2015 − 0.22 [− 0.55, 0.11] 0.188

Month February − 0.13 [− 0.46, 0.18] 0.403 0.000 0.04 0.000

March − 0.10 [− 0.42, 0.22] 0.536

April 0.11 [− 0.21, 0.43] 0.505

May 0.50 [0.17, 0.82] 0.003

June 0.56 [0.23, 0.88] 0.001

July 0.59 [0.26, 0.91] 0.000

August − 0.06 [− 0.39, 0.26] 0.698

September − 0.33 [− 0.66, − 0.01] 0.044

October − 0.42 [− 0.75, − 0.09] 0.012

November − 0.33 [− 0.66, − 0.01] 0.043

December − 0.58 [− 0.91, − 0.25] 0.000
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epidemics occurred in 1931, 1932, 1934, 1937, 1940 and 
1944, and in each of the years, 1945–1948 malaria was 
prevalent from May to July [49]. In May 2002, exceptional 
rainfall in the western highlands of Kenya led to epidem-
ics in some districts in June and July [50] and the months 
with peak parasite densities appeared to be 1–2 months 
following rainfall peaks [51, 52]. Predictably, increased 
rainfall generates multiple breeding sites for mosquitoes, 
thus increasing their numbers and in turn influencing 
the vectorial capacity. With this seasonal predictability 
of malaria transmission, these findings present an oppor-
tunity for temporally targeted refresher CHW training, 
improved capacity in terms of availing prevention strate-
gies, diagnostic kits, and medications.

Interestingly, significant village-scale spatial varia-
tions in malaria diagnosis were observed across villages 
with regard to community-based diagnosis in this study. 
This could be due to two reasons and/or an interaction 
between them. The variations may have occurred due to 
variations in locations of the villages across the study site 
as also observed by Chanda et  al. [53] in Zambia. Spatial 
epidemiology describes how the temporal dynamics of a 
host, vector(s), and pathogen populations interact spatially 
within a permissive environment to enable transmission 
[54]. In the context of spatial epidemiology in this study, vil-
lages on the outer edges of the study area (Ramula, Gongo, 
and Nyawara) had high cases of malaria compared to vil-
lages located in the center of the study area (Nyamninia, 
Nyandiwa, and Lihanda). Inter-village heterogeneity in 
local hydrology can generate dissimilar micro-habitats of 
suitable breeding areas following rain perhaps exhibiting 
different levels of transmission. Village-scale spatial vari-
ability in hydrology may as well be associated with either 
presence/absence of vegetation which provides resting sites 
for adult mosquitoes or with topographic effects. In this 
manner, village-scale hydrological conditions may become 
important determinants of local malaria transmission 
[55]. This could further be influenced by the observation 
that the characteristic spatial scale of Anopheles mosquito 
population movement is approximately 1–2 km [56], which 
is approximately equivalent to sizes of villages in Kenya. 
Indeed, studies have reported that breeding habitats with 
high transmission intensity frequently occurs within tens 
to hundreds of meters of the nearest human habitation 
[57]. Secondly, socio-economic and socio-cultural factors 
influencing health-seeking behaviour could generate vil-
lage-level spatial effects. One possible explanation for this 
is the distance to the CHW versus distance to health cent-
ers. Families who are far from health centers are more likely 
to utilize CHWs than ones close to health centers in the 
management of uncomplicated malaria [58]. In addition, 
individual factors in terms of performance of CHWs and 
corresponding perception of effectiveness may have varied 

from one village to another. It is also possible that the level 
of support supervision by support managers was not objec-
tively constant across the villages. This latter reason is sup-
ported by studies that evaluated CHW performance in 
1998, 1999, and 2001 in this study site—Siaya, Kenya which 
reported that key reasons for the inadequacies in perfor-
mance appeared to be guideline ambiguities and weak and 
subjective clinical supervision [59]. In Ethiopia, socio-eco-
nomic, geographic and demographic factors were closely 
associated with the risk of malaria in different villages [60]. 
This study, therefore, hypothesizes that socio-economic 
and socio-cultural factors in with community-malaria case 
management associated with utilization of CHWs may 
have implications in perceived spatial variations in malaria 
transmission risk and detection.

In this study, none of the tested rainfall regimes (cur-
rent, lagged or cumulative) was associated with report-
ing malaria-positive fever cases during the 3-year period. 
A similar observation has been reported where other 
environmental parameters, i.e. vegetation index and sur-
face temperature demonstrated strong associations [33]. 
Although the association between rainfall and malaria 
is well established, malaria transmission and the envi-
ronmental parameters are related in a complex way, e.g. 
while elevated rainfall may intensify vector populations 
generating numerous Anopheles breeding sites, excessive 
rains falling in short time may wash away larvae [61]. In 
western Kenya, (and Africa in general) weather stations 
are sparse and data that emanates from is not reliable. 
This lack of meteorological information was compen-
sated for by using satellite-based methods to source the 
rainfall data. Previous reports have favourably validated 
satellite products derived from TRMM sensor with 
the ground-based weather stations [62]. Moreover, the 
TRMM has been demonstrated to present a superior spa-
tial and temporal estimate of precipitation in Africa [62] 
relative to other satellite-based rainfall estimate products. 
Other reasons that could have influenced the observed 
lack of relationship in this study include topography, veg-
etation, soil type differences as well as shallow ground-
water behaviour which have been reported to influence 
malaria transmission at micro-habitat levels [63].

This study is not without limitations. The study did 
not acquire data that would increase the understanding 
of factors associated with utilization of CHWs relative 
to utilization of health facilities. This would include data 
that would describe characteristics of families [15], uti-
lization of shopkeepers in the study area [15], perceived 
strengths and weaknesses of CHWs and knowledge, 
attitude and practices of malaria diagnosis and treat-
ment. A key question is whether increased utilization of 
CHWs and increased diagnosis of malaria is associated 
with improved access to prompt and effective malaria 
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treatment. Additionally, a lack of baseline data or con-
trol group makes it difficult to assess the internal valid-
ity of these findings. However, the fact that this was a 
multi-year study strongly hypothesizes improved trends 
of CHW utilization similar to many studies conducted in 
the same geographical context corresponding to a non-
reported significant change in the climatic conditions 
that are favourable for malaria transmission.

Conclusions
The results of this study provide evidence that CHWs have 
the potential to be increasingly accepted and utilized by 
communities as part of a functional community health 
care delivery. In the context of malaria, this has the poten-
tial for improved management of uncomplicated fever-
related malarial cases in rural Kenya, thereby reducing 
the burden on facility-based management through task-
shifting. The chance of the malaria case being diagnosed 
by CHWs versus being diagnosed in a health facility was 
similarly high in periods 1–3  months following rainfall. 
This predictability presents opportunities for policy-tar-
geted preparedness and control measures that would real-
ize overall malaria case management. However, rainfall, 
tested under different regimes (current, lagged or cumula-
tive) was not a predictor for diagnosing malaria by CHWs 
and in health facilities. Data on spatial hydrologic variabil-
ity that is thought to influence local, village-scale mosquito 
abundance in areas of water-limited, seasonal malaria 
transmission was not available in this study. Therefore, 
it was only possible to hypothesize in village-level vari-
ability in the risk of malaria diagnosis. These findings will 
contribute to policy actions that may scale-up community 
health services in remote rural settings. Additionally, oper-
ational research is needed to understand the bidirectional 
knowledge, attitude and practices among CHWs and the 
communities they serve given the role that CHWs could 
play in improving access to malaria treatment (and other 
preventable childhood illnesses as well).
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